In Phase I of the FDEP grant, NClear conducted a pilot study in a one-acre sequestered section of Lake Apopka. The results indicated ortho P removal of more than 90%, along with improved water clarity and a significant decrease in the sediment layer. FDEP subsequently authorized NClear, in conjunction with the University of Florida (UF) Soil Microbial Ecology laboratory as a subcontractor, to begin a series of supplemental bench scale studies with sediments from Lake Apopka to, inter alia, identify biogeochemical changes in surficial sediments expected to occur following treatment with TPX™. This involved a series of laboratory microcosm experiments designed to quantify the effects of TPX™ on sequestering P from sediment and water column samples taken from three locations as shown in Figure 1.
The results shown in Figure 2 illustrate that 0.1 g/L TPX™ should be sufficient to adsorb the SRP in solution following the period of stabilization. For example, equilibrium SRP concentrations were all below 0.017 mg/L for expected concentrations <= 0.108 mg/L. At higher spike levels, equilibrium SRP began to increase with the maximum equilibrium concentration (0.078 mg/L which equates to 87% removal) occurring in response to the highest spike.
Results from a TPX™ mixing experiment are shown in Figure 3. Overlying water concentrations of SRP in the microcosms after the initial stabilization period (216 hours) ranged from 0.009 to 0.021 mg/L. Resuspension of the sediments for an hour following the stabilization period resulted in an immediate increase in SRP for Sites 2 and 3 (0.042 and 0.030 mg/L, respectively measured after allowing the water to clarify and a stable interface to form). Addition of TPX™ (0.1 g/L) resulted in reducing the water column SRP concentrations to all less than 0.009 mg/L. Further resuspension did not result in any measurable release of SRP following the addition of TPX™; restated, the addition of TPX™ to the microcosms not only effectively mitigated the initial resuspension release of SRP but also was sufficient to stabilize the sediments against further net release of SRP associated with additional mixing.
The TPX™ mixing experiment was then continued to evaluate the effects of the TPX™ treatment on passive releases of P from the sediments into the overlying water column over an extended period. After conducting the second resuspension event, the microcosms were separated into two groups (oxygenated and anoxic) and allowed to incubate under quiescent conditions for 28 days. Results for SRP are shown in Figure 4 as a function of redox regime for each of the three lake sites, and indicate that SRP concentration for all three sites under aerobic conditions remain uniformly low, averaging 0.007 mg/L, after 28 days. By comparison, SRP concentrations under anaerobic conditions (which are not sustained in Lake Apopka due to its shallowness and wind-wave dynamics) were substantially elevated, averaging 0.070 mg/L.
The experimental data from the Phase 1 in situ study and the Phase 2 UF lab study presented here – which are consistent and supported by supplemental thermodynamic modeling done in parallel to this project – indicate that the application of TPX™ can effectively and permanently sequester P in both the water column and the sediment, thereby mitigating the internal loading of P in Lake Apopka. The key to using this technology towards accelerating the recovery of Lake Apopka will be predicated on properly dosing the lake such that the mitigation is not only effective in the short term but also provides sufficient sustained benefits for the sediments to further stabilize and allow for rooted macrophyte recolonization to become more fully re-established.
Electrichlor, founded in 2001 and based in Laramie, Wyoming, is a leading manufacturer of hypochlorite generators serving the marine, maritime, power generation, petroleum, and water treatment industries. NClear acquired Electrichlor in February 2021.